Developing sustainable ICT and future telecommunications systems (e.g., 6G, quantum comms, AI-assist) with a bold focus on resilience has become a key national priority. Congested radio spectrum and coexistence of broadband wireless systems produce interferences and increase the real risk of failing future telecommunication infrastructure. Highly sensitive receivers and the ability to measure weak signals (comparable with noises and interferences) have become a very challenging metrological problem.
Recently, non-invasive Rydberg quantum sensing technology (RQST) has emerged as an enabling paradigm that offers highly sensitive and traceable measurements of RF fields over a wide frequency range and have become a very attractive solution. Different designs are reported but their insight understanding, especially from metrology perspective is still very limited.
Aligned with the EPSRC priority areas in digital futures and quantum technologies, this project is to conduct a comprehensive study on RQST using both theoretical and experimental approaches with the main objectives: 1-Study the RQST and identify the suitable frequency range and achievable sensitivity; 2-Develop state-of-the-art Rydberg quantum sensing testbed, evaluate its measurement accuracy and sensitivity; 3-Apply the RQST for resilient communications and identify its advantages and limitations (e.g., sensitivity, stability, traceability in complex environments); 4-Develop methodologies for characterising resilient communication performance of emerging telecommunication systems in complex electromagnetic environments using the RQST.